Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: covidwho-2287228

ABSTRACT

Porcine epidemic diarrhea (PED) is an acute and severe atrophic enteritis caused by porcine epidemic diarrhea virus (PEDV) that infects pigs and makes huge economic losses to the global swine industry. Previously, researchers have believed that porcine aminopeptidase-N (pAPN) was the primary receptor for PEDV, but it has been found that PEDV can infect pAPN knockout pigs. Currently, the functional receptor for PEDV remains unspecified. In the present study, we performed virus overlay protein binding assay (VOPBA), found that ATP1A1 was the highest scoring protein in the mass spectrometry results, and confirmed that the CT structural domain of ATP1A1 interacts with PEDV S1. First, we investigated the effect of ATP1A1 on PEDV replication. Inhibition of hosts ATP1A1 protein expression using small interfering RNA (siRNAs) significantly reduced the cells susceptibility to PEDV. The ATP1A1-specific inhibitors Ouabain (a cardiac steroid) and PST2238 (a digitalis toxin derivative), which specifically bind ATP1A1, could block the ATP1A1 protein internalization and degradation, and consequently reduce the infection rate of host cells by PEDV significantly. Additionally, as expected, overexpression of ATP1A1 notably enhanced PEDV infection. Next, we observed that PEDV infection of target cells resulted in upregulation of ATP1A1 at the mRNA and protein levels. Furthermore, we found that the host protein ATP1A1 was involved in PEDV attachment and co-localized with PEDV S1 protein in the early stage of infection. In addition, pretreatment of IPEC-J2 and Vero-E6 cells with ATP1A1 mAb significantly reduced PEDV attachment. Our observations provided a perspective on identifying key factors in PEDV infection, and may provide valuable targets for PEDV infection, PEDV functional receptor, related pathogenesis, and the development of new antiviral drugs.


Subject(s)
Coronavirus Infections , Host-Pathogen Interactions , Porcine epidemic diarrhea virus , Sodium-Potassium-Exchanging ATPase , Swine Diseases , Animals , CD13 Antigens/metabolism , Chlorocebus aethiops , Porcine epidemic diarrhea virus/physiology , Receptors, Virus/metabolism , RNA, Double-Stranded , RNA, Small Interfering , Swine , Swine Diseases/metabolism , Vero Cells , Virus Attachment , Coronavirus Infections/metabolism , Coronavirus Infections/veterinary , Coronavirus Infections/virology , Sodium-Potassium-Exchanging ATPase/metabolism
2.
Nano Lett ; 23(9): 3701-3707, 2023 05 10.
Article in English | MEDLINE | ID: covidwho-2280132

ABSTRACT

Speed is key during infectious disease outbreaks. It is essential, for example, to identify critical host binding factors to pathogens as fast as possible. The complexity of host plasma membrane is often a limiting factor hindering fast and accurate determination of host binding factors as well as high-throughput screening for neutralizing antimicrobial drug targets. Here, we describe a multiparametric and high-throughput platform tackling this bottleneck and enabling fast screens for host binding factors as well as new antiviral drug targets. The sensitivity and robustness of our platform were validated by blocking SARS-CoV-2 particles with nanobodies and IgGs from human serum samples.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Virus Attachment , High-Throughput Screening Assays , Protein Binding
3.
PLoS One ; 18(3): e0281642, 2023.
Article in English | MEDLINE | ID: covidwho-2285870

ABSTRACT

At the outset of an emergent viral respiratory pandemic, sequence data is among the first molecular information available. As viral attachment machinery is a key target for therapeutic and prophylactic interventions, rapid identification of viral "spike" proteins from sequence can significantly accelerate the development of medical countermeasures. For six families of respiratory viruses, covering the vast majority of airborne and droplet-transmitted diseases, host cell entry is mediated by the binding of viral surface glycoproteins that interact with a host cell receptor. In this report it is shown that sequence data for an unknown virus belonging to one of the six families above provides sufficient information to identify the protein(s) responsible for viral attachment. Random forest models that take as input a set of respiratory viral sequences can classify the protein as "spike" vs. non-spike based on predicted secondary structure elements alone (with 97.3% correctly classified) or in combination with N-glycosylation related features (with 97.0% correctly classified). Models were validated through 10-fold cross-validation, bootstrapping on a class-balanced set, and an out-of-sample extra-familial validation set. Surprisingly, we showed that secondary structural elements and N-glycosylation features were sufficient for model generation. The ability to rapidly identify viral attachment machinery directly from sequence data holds the potential to accelerate the design of medical countermeasures for future pandemics. Furthermore, this approach may be extendable for the identification of other potential viral targets and for viral sequence annotation in general in the future.


Subject(s)
Medical Countermeasures , Viruses , Virus Attachment , Machine Learning , Glycosylation
4.
Nat Commun ; 13(1): 7926, 2022 12 24.
Article in English | MEDLINE | ID: covidwho-2185832

ABSTRACT

Recent waves of COVID-19 correlate with the emergence of the Delta and the Omicron variant. We report that the Spike trimer acts as a highly dynamic molecular caliper, thereby forming up to three tight bonds through its RBDs with ACE2 expressed on the cell surface. The Spike of both Delta and Omicron (B.1.1.529) Variant enhance and markedly prolong viral attachment to the host cell receptor ACE2, as opposed to the early Wuhan-1 isolate. Delta Spike shows rapid binding of all three Spike RBDs to three different ACE2 molecules with considerably increased bond lifetime when compared to the reference strain, thereby significantly amplifying avidity. Intriguingly, Omicron (B.1.1.529) Spike displays less multivalent bindings to ACE2 molecules, yet with a ten time longer bond lifetime than Delta. Delta and Omicron (B.1.1.529) Spike variants enhance and prolong viral attachment to the host, which likely not only increases the rate of viral uptake, but also enhances the resistance of the variants against host-cell detachment by shear forces such as airflow, mucus or blood flow. We uncover distinct binding mechanisms and strategies at single-molecule resolution, employed by circulating SARS-CoV-2 variants to enhance infectivity and viral transmission.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Single Molecule Imaging , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment
5.
Molecules ; 27(23)2022 Nov 30.
Article in English | MEDLINE | ID: covidwho-2200538

ABSTRACT

A-type proanthocyanidins (PAC-As) are plant-derived natural polyphenols that occur as oligomers or polymers of flavan-3-ol monomers, such as (+)-catechin and (-)-epicatechin, connected through an unusual double A linkage. PAC-As are present in leaves, seeds, flowers, bark, and fruits of many plants, and are thought to exert protective natural roles against microbial pathogens, insects, and herbivores. Consequently, when tested in isolation, PAC-As have shown several biological effects, through antioxidant, antibacterial, immunomodulatory, and antiviral activities. PAC-As have been observed in fact to inhibit replication of many different human viruses, and both enveloped and non-enveloped DNA and RNA viruses proved sensible to their inhibitory effect. Mechanistic studies revealed that PAC-As cause reduction of infectivity of viral particles they come in contact with, as a result of their propensity to interact with virion surface capsid proteins or envelope glycoproteins essential for viral attachment and entry. As viral infections and new virus outbreaks are a major public health concern, development of effective Broad-Spectrum Antiviral Agents (BSAAs) that can be rapidly deployable even against future emerging viruses is an urgent priority. This review summarizes the antiviral activities and mechanism of action of PAC-As, and their potential to be deployed as BSAAs against present and future viral infections.


Subject(s)
Catechin , Proanthocyanidins , Virus Diseases , Viruses , Humans , Proanthocyanidins/pharmacology , Antiviral Agents/pharmacology , Virus Attachment , Catechin/pharmacology
6.
J Mol Biol ; 435(4): 167928, 2023 02 28.
Article in English | MEDLINE | ID: covidwho-2165599

ABSTRACT

The emergence of SARS-CoV-2 variants alters the efficacy of existing immunity, whether arisen naturally or through vaccination. Understanding the structure of the viral spike assists in determining the impact of mutations on the antigenic surface. One class of mutation impacts glycosylation attachment sites, which have the capacity to influence the antigenic structure beyond the immediate site of attachment. Here, we compare the site-specific glycosylation of recombinant viral spike mimetics of B.1.351 (Beta), P.1 (Gamma), B.1.617.2 (Delta), B.1.1.529 (Omicron). The P.1 strain exhibits two additional N-linked glycan sites compared to the other variants analyzed and we investigate the impact of these glycans by molecular dynamics. The acquired N188 site is shown to exhibit very limited glycan maturation, consistent with limited enzyme accessibility. Structural modeling and molecular dynamics reveal that N188 is located within a cavity by the receptor binding domain, which influences the dynamics of these attachment domains. These observations suggest a mechanism whereby mutations affecting viral glycosylation sites have a structural impact across the protein surface.


Subject(s)
COVID-19 , Immune Evasion , Polysaccharides , SARS-CoV-2 , Virus Attachment , Humans , Antigens, Surface/chemistry , Antigens, Surface/genetics , Polysaccharides/chemistry , Polysaccharides/immunology , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Glycosylation
7.
Int J Mol Sci ; 23(22)2022 Nov 08.
Article in English | MEDLINE | ID: covidwho-2143212

ABSTRACT

Coxsackieviruses, a genus of enteroviruses in the small RNA virus family, cause fatal infectious diseases in humans. Thus far, there are no approved drugs to prevent these diseases. Human milk contains various biologically active components against pathogens. Currently, the potential activity of breast milk components against the coxsackievirus remains unclear. In our study, the inhibitory effect of 16 major human milk components was tested on coxsackievirus class A type 9 isolate (CV-A9), BUCT01; 2'-Fucosyllactose (2'-FL) was identified to be effective. Time-of-addition, attachment internalisation assays, and the addition of 2'-FL at different time points were applied to investigate its specific role in the viral life cycle. Molecular docking was used to predict 2'-FL's specific cellular targets. The initial screening revealed a significant inhibitory effect (99.97%) against CV-A9 with 10 mg/mL 2'-FL, with no cytotoxicity observed. Compared with the control group, 2'-FL blocked virus entry (85%) as well as inhibited viral attachment (48.4%) and internalisation (51.3%), minimising its infection in rhabdomyosarcoma (RD) cells. The cell pre-incubation with 2'-FL exhibited significant inhibition (73.2-99.9%). Extended incubation between cells with 2'-FL reduced CV-A9 infection (93.9%), suggesting that 2'-FL predominantly targets cells to block infection. Molecular docking results revealed that 2'-FL interacted with the attachment receptor αvß6 and the internalisation receptor FCGRT and ß2M with an affinity of -2.14, -1.87, and -5.43 kcal/mol, respectively. This study lays the foundation for using 2'-FL as a food additive against CV-A9 infections.


Subject(s)
Coxsackievirus Infections , Enterovirus , Humans , Virus Attachment , Molecular Docking Simulation
8.
Biomed Pharmacother ; 155: 113766, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2104426

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly transmissible coronavirus that has caused over 6 million fatalities. SARS-CoV-2 variants with spike mutations are frequently endowed with a strong capability to escape vaccine-elicited protection. Due to this characteristic, a broad-spectrum inhibitor against SARS-CoV-2 infection is urgently demanded. Ganoderma microsporum immunomodulatory protein (GMI) was previously reported to alleviate infection of SARS-CoV-2 through ACE2 downregulation whereas the impact of GMI on virus itself was less understood. Our study aims to determine the effects of GMI on SARS-CoV-2 pseudovirus and the more detailed mechanisms of GMI inhibition against SARS-CoV-2 pseudovirus infection. METHODS: ACE2-overexpressing HEK293T cells (HEK293T/ACE2) and SARS-CoV-2 pseudoviruses carrying spike variants were used to study the effects of GMI in vitro. Infectivity was evaluated by fluorescence microscopy and flow cytometry. Fusion rate mediated by SARS-CoV-2 spike protein was examined with split fluorescent protein /luciferase systems. The interactions of GMI with SARS-CoV-2 pseudovirus and ACE2 were investigated by immunoprecipitation and immunoblotting. RESULTS: GMI broadly blocked SARS-CoV-2 infection in various cell lines. GMI effectively inhibited the infection of pseudotyped viruses carrying different emerged spike variants, including Delta and Omicron strains, on HEK293T/hACE2 cells. In cell-free virus infection, GMI dominantly impeded the binding of spike-bearing pseudotyped viruses to ACE2-expressing cells. In cell-to-cell fusion model, GMI could efficiently inhibit spike-mediated syncytium without the requirement of ACE2 downregulation. CONCLUSIONS: GMI, an FDA-approved dietary ingredient, acts as a multifunctional broad-spectrum antiviral against SARS-CoV-2 and could become a promising candidate for preventing or treating SARS-CoV-2 associated diseases.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Angiotensin-Converting Enzyme 2 , Antiviral Agents/pharmacology , Virus Attachment , Receptors, Virus/metabolism , Cell Fusion , HEK293 Cells , Protein Binding
9.
Sci Rep ; 12(1): 16878, 2022 10 07.
Article in English | MEDLINE | ID: covidwho-2062259

ABSTRACT

Recent reports demonstrate that SARS-CoV-2 utilizes cell surface heparan sulfate as an attachment factor to facilitate the initial interaction with host cells. Heparan sulfate interacts with the receptor binding domain of SARS-CoV-2 spike glycoprotein, and blocking this interaction can decrease cell infection. We and others reported recently that the family of compounds of 2,5-dihydroxyphenylic acid interferes with the binding of the positively charged groove in growth factor molecules to negatively charged cell surface heparan sulfate. We hypothesized that Calcium Dobesilate (CaD)-calcium salt of 2,5-dihydroxyphenylic acid-may also interfere with the binding of SARS-CoV-2 spike protein to heparan sulfate. Using lentiviral SARS-CoV-2 spike protein pseudotyped particles we show that CaD could significantly reduce pseudovirus uptake into endothelial cells. On the contrary, CaD did not affect cell infection with VSVG-expressing lentivirus. CaD could also prevent retention of SARS-CoV-2 spike protein in ex vivo perfused mouse kidney. Using microfluidic culture of endothelial cells under flow, we show that CaD prevents spike protein interaction with heparan sulfate glycocalyx. Since CaD has no adverse side effects and is approved in humans for other medical indications, our findings can rapidly translate into clinical studies.


Subject(s)
COVID-19 Drug Treatment , Calcium Dobesilate , Animals , Calcium/metabolism , Endothelial Cells/metabolism , Heparitin Sulfate/metabolism , Heparitin Sulfate/pharmacology , Humans , Mice , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment
10.
J Biol Chem ; 298(11): 102500, 2022 11.
Article in English | MEDLINE | ID: covidwho-2041895

ABSTRACT

Coronavirus disease represents a real threat to the global population, and understanding the biological features of the causative virus, that is, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is imperative for mitigating this threat. Analyses of proteins such as primary receptors and coreceptors (cofactors), which are involved in the entry of SARS-CoV-2 into host cells, will provide important clues to help control the virus. Here, we identified host cell membrane protein candidates present in proximity to the attachment sites of SARS-CoV-2 spike proteins, using proximity labeling and proteomic analysis. The identified proteins represent key candidate factors that may be required for viral entry. We found SARS-CoV-2 host protein DPP4, cell adhesion protein Cadherin 17, and glycoprotein CD133 colocalized with cell membrane-bound SARS-CoV-2 spike proteins in Caco-2 cells and thus showed potential as candidate factors. Additionally, our analysis of the experimental infection of HEK293T cells with a SARS-CoV-2 pseudovirus indicated a 2-fold enhanced infectivity in the CD133-ACE2-coexpressing HEK293T cells compared to that in HEK293T cells expressing ACE-2 alone. The information and resources regarding these coreceptor labeling and analysis techniques could be utilized for the development of antiviral agents against SARS-CoV-2 and other emerging viruses.


Subject(s)
COVID-19 , Membrane Proteins , Spike Glycoprotein, Coronavirus , Virus Attachment , Humans , Angiotensin-Converting Enzyme 2 , Caco-2 Cells , HEK293 Cells , Membrane Proteins/metabolism , Protein Binding , Proteomics , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Receptors, Virus/metabolism
11.
Int J Mol Sci ; 23(17)2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2006046

ABSTRACT

Sialic acids and heparan sulfates make up the outermost part of the cell membrane and the extracellular matrix. Both structures are characterized by being negatively charged, serving as receptors for various pathogens, and are highly expressed in the respiratory and digestive tracts. Numerous viruses use heparan sulfates as receptors to infect cells; in this group are HSV, HPV, and SARS-CoV-2. Other viruses require the cell to express sialic acids, as is the case in influenza A viruses and adenoviruses. This review aims to present, in a general way, the participation of glycoconjugates in viral entry, and therapeutic strategies focused on inhibiting the interaction between the virus and the glycoconjugates. Interestingly, there are few studies that suggest the participation of both glycoconjugates in the viruses addressed here. Considering the biological redundancy that exists between heparan sulfates and sialic acids, we propose that it is important to jointly evaluate and design strategies that contemplate inhibiting the interactions of both glycoconjugates. This approach will allow identifying new receptors and lead to a deeper understanding of interspecies transmission.


Subject(s)
COVID-19 , Viruses , Glycoconjugates/metabolism , Heparitin Sulfate/metabolism , Humans , N-Acetylneuraminic Acid/metabolism , Receptors, Virus/metabolism , SARS-CoV-2 , Sialic Acids/metabolism , Sulfates , Virus Attachment , Viruses/metabolism
12.
Thromb Haemost ; 122(6): 984-997, 2022 06.
Article in English | MEDLINE | ID: covidwho-1915318

ABSTRACT

Two years since the outbreak of the novel coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic, there remain few clinically effective drugs to complement vaccines. One is the anticoagulant, heparin, which in 2004 was found able to inhibit invasion of SARS-CoV (CoV-1) and which has been employed during the current pandemic to prevent thromboembolic complications and moderate potentially damaging inflammation. Heparin has also been shown experimentally to inhibit SARS-CoV-2 attachment and infection in susceptible cells. At high therapeutic doses however, heparin increases the risk of bleeding and prolonged use can cause heparin-induced thrombocytopenia, a serious side effect. One alternative, with structural similarities to heparin, is the plant-derived, semi-synthetic polysaccharide, pentosan polysulfate (PPS). PPS is an established drug for the oral treatment of interstitial cystitis, is well-tolerated, and exhibits weaker anticoagulant effects than heparin. In an established Vero cell model, PPS and its fractions of varying molecular weights inhibited invasion by SARS-CoV-2. Intact PPS and its size-defined fractions were characterized by molecular weight distribution and chemical structure using nuclear magnetic resonance spectroscopy and liquid chromatography-mass spectrometry, then employed to explore the structural basis of interactions with SARS-CoV-2 spike protein receptor-binding domain (S1 RBD) and the inhibition of Vero cell invasion. PPS was as effective as unfractionated heparin, but more effective in inhibiting cell infection than low-molecular-weight heparin (on a weight/volume basis). Isothermal titration calorimetry and viral plaque-forming assays demonstrated size-dependent binding to S1 RBD and inhibition of Vero cell invasion, suggesting the potential application of PPS as a novel inhibitor of SARS-CoV-2 infection.


Subject(s)
Pentosan Sulfuric Polyester , SARS-CoV-2 , Virus Attachment , Animals , Anticoagulants/pharmacology , Chlorocebus aethiops , Heparin/therapeutic use , Pentosan Sulfuric Polyester/pharmacology , Protein Binding , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus , Vero Cells , Virus Attachment/drug effects
13.
J Med Virol ; 93(9): 5487-5504, 2021 09.
Article in English | MEDLINE | ID: covidwho-1733919

ABSTRACT

Along with the control and prevention of coronavirus disease 2019 transmission, infected animals might have potential to carry the virus to spark new outbreaks. However, very few studies explore the susceptibility of animals to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Viral attachment as a crucial step for cross-species infection requires angiotensin-converting enzyme 2 (ACE2) as a receptor and depends on TMPRSS2 protease activity. Here, we searched the genomes of metazoans from different classes using an extensive BLASTP survey and found ACE2 and TMPRSS2 occur in vertebrates, but some vertebrates lack Tmprss2. We identified 6 amino acids among 25 known human ACE2 residues are highly associated with the binding of ACE2 to SARS-CoV-2 (p value < .01) by Fisher exact test, and following this, calculated the probability of viral attachment within each species by the randomForest function from R randomForest library. Furthermore, we observed that Ace2 selected from seven animals based on the above analysis lack the hydrophobic contacts identified on human ACE2, indicating less affinity of SARS-CoV-2 to Ace2 in animals than humans. Finally, the alignment of 3D structure between human ACE2 and other animals by I-TASSER and TM-align displayed a reasonable structure for viral attachment within these species. Taken together, our data may shed light on the human-to-animal transmission of SARS-CoV-2.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Host-Pathogen Interactions , SARS-CoV-2/physiology , Serine Endopeptidases/metabolism , Vertebrates/metabolism , Angiotensin-Converting Enzyme 2/genetics , Animals , COVID-19/genetics , COVID-19/metabolism , Disease Susceptibility , Genetic Predisposition to Disease , Humans , Receptors, Virus/metabolism , SARS-CoV-2/classification , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/metabolism , Vertebrates/genetics , Virus Attachment , Virus Internalization , Virus Release
14.
J Infect Dis ; 225(5): 810-819, 2022 03 02.
Article in English | MEDLINE | ID: covidwho-1722486

ABSTRACT

The pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not completely understood. SARS-CoV-2 infection frequently causes significant immune function consequences including reduced T cell numbers and enhanced T cell exhaustion that contribute to disease severity. The extent to which T cell effects are directly mediated through infection or indirectly result from infection of respiratory-associated cells is unclear. We show that primary human T cells express sufficient levels of angiotensin converting enzyme 2 (ACE-2), the SARS-CoV-2 receptor, to mediate viral binding and entry into T cells. We further show that T cells exposed to SARS-CoV-2 particles demonstrate reduced proliferation and apoptosis compared to uninfected controls, indicating that direct interaction of SARS-CoV-2 with T cells may alter T cell growth, activation, and survival. Regulation of T cell activation and/or turnover by SARS-CoV-2 may contribute to impaired T cell function observed in patients with severe disease.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , T-Lymphocytes/metabolism , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment
15.
J Med Virol ; 94(4): 1738-1744, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1718408

ABSTRACT

As the latest identified novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant of concern (VOC), the influence of Omicron on our globe grows promptly. Compared with the last VOC (Delta variant), more mutations were identified, which may address the characteristics of Omicron. Considering these crucial mutations and their implications including an increase in transmissibility, COVID-19 severity, and reduction of efficacy of currently available diagnostics, vaccines, and therapeutics, Omicron has been classified as one of the VOC. Notably, 15 of these mutations reside in the receptor-binding domain of spike glycoprotein, which may alter transmissibility, infectivity, neutralizing antibody escape, and vaccine breakthrough cases of COVID-19. Therefore, our present study characterizes the mutational hotspots of the Omicron variant in comparison with the Delta variant of SARS-CoV-2. Furthermore, detailed information was analyzed to characterize the global perspective of Omicron, including transmission dynamic, effect on testing, and immunity, which shall promote the progress of the clinical application and basic research. Collectively, our data suggest that due to continuous variation in the spike glycoprotein sequences, the use of coronavirus-specific attachment inhibitors may not be the current choice of therapy for emerging SARS-CoV-2 VOCs. Hence, we need to proceed with a sense of urgency in this matter.


Subject(s)
SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/transmission , COVID-19 Testing , Humans , Immune Evasion/genetics , Mutation , Phylogeny , Prevalence , Protein Binding/genetics , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Vaccination , Virus Attachment
16.
Viruses ; 14(2)2022 02 17.
Article in English | MEDLINE | ID: covidwho-1703374

ABSTRACT

Coronaviruses (CoVs) are common among humans and many animals, causing respiratory or gastrointestinal diseases. Currently, only a few antiviral drugs against CoVs are available. Especially for SARS-CoV-2, new compounds for treatment of COVID-19 are urgently needed. In this study, we characterize the antiviral effects of two high-sulfated glycosaminoglycan (GAG) derivatives against SARS-CoV-2 and bovine coronaviruses (BCoV), which are both members of the Betacoronavirus genus. The investigated compounds are based on hyaluronan (HA) and chondroitin sulfate (CS) and exhibit a strong inhibitory effect against both CoVs. Yield assays were performed using BCoV-infected PT cells in the presence and absence of the compounds. While the high-sulfated HA (sHA3) led to an inhibition of viral growth early after infection, high-sulfated CS (sCS3) had a slightly smaller effect. Time of addition assays, where sHA3 and sCS3 were added to PT cells before, during or after infection, demonstrated an inhibitory effect during all phases of infection, whereas sHA3 showed a stronger effect even after virus absorbance. Furthermore, attachment analyses with prechilled PT cells revealed that virus attachment is not blocked. In addition, sHA3 and sCS3 inactivated BCoV by stable binding. Analysis by quantitative real-time RT PCR underlines the high potency of the inhibitors against BCoV, as well as B.1-lineage, Alpha and Beta SARS-CoV-2 viruses. Taken together, these results demonstrated that the two high-sulfated GAG derivatives exhibit low cytotoxicity and represent promising candidates for an anti-CoV therapy.


Subject(s)
Antiviral Agents/pharmacology , Coronavirus Infections/veterinary , Coronavirus, Bovine/drug effects , Glycosaminoglycans/pharmacology , SARS-CoV-2/drug effects , Animals , Cattle , Cell Line , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/pharmacology , Coronavirus Infections/drug therapy , Glycosaminoglycans/chemistry , Glycosaminoglycans/metabolism , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Sulfates/chemistry , Sulfates/pharmacology , Virus Attachment/drug effects , COVID-19 Drug Treatment
17.
Nat Commun ; 13(1): 1002, 2022 02 22.
Article in English | MEDLINE | ID: covidwho-1702683

ABSTRACT

The molecular events that permit the spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to bind and enter cells are important to understand for both fundamental and therapeutic reasons. Spike proteins consist of S1 and S2 domains, which recognize angiotensin-converting enzyme 2 (ACE2) receptors and contain the viral fusion machinery, respectively. Ostensibly, the binding of spike trimers to ACE2 receptors promotes dissociation of the S1 domains and exposure of the fusion machinery, although the molecular details of this process have yet to be observed. We report the development of bottom-up coarse-grained (CG) models consistent with cryo-electron tomography data, and the use of CG molecular dynamics simulations to investigate viral binding and S2 core exposure. We show that spike trimers cooperatively bind to multiple ACE2 dimers at virion-cell interfaces in a manner distinct from binding between soluble proteins, which processively induces S1 dissociation. We also simulate possible variant behavior using perturbed CG models, and find that ACE2-induced S1 dissociation is primarily sensitive to conformational state populations and the extent of S1/S2 cleavage, rather than ACE2 binding affinity. These simulations reveal an important concerted interaction between spike trimers and ACE2 dimers that primes the virus for membrane fusion and entry.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Receptors, Virus/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Algorithms , Angiotensin-Converting Enzyme 2/chemistry , COVID-19/virology , Host-Pathogen Interactions , Humans , Membrane Fusion , Molecular Dynamics Simulation , Protein Binding , Protein Domains , Protein Multimerization , Receptors, Virus/chemistry , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Virus Attachment , Virus Internalization
18.
PLoS Pathog ; 18(2): e1010343, 2022 02.
Article in English | MEDLINE | ID: covidwho-1690680

ABSTRACT

The continuous emergence of severe acute respiratory coronavirus 2 (SARS-CoV-2) variants and the increasing number of breakthrough infection cases among vaccinated people support the urgent need for research and development of antiviral drugs. Viral entry is an intriguing target for antiviral drug development. We found that diltiazem, a blocker of the L-type calcium channel Cav1.2 pore-forming subunit (Cav1.2 α1c) and an FDA-approved drug, inhibits the binding and internalization of SARS-CoV-2, and decreases SARS-CoV-2 infection in cells and mouse lung. Cav1.2 α1c interacts with SARS-CoV-2 spike protein and ACE2, and affects the attachment and internalization of SARS-CoV-2. Our finding suggests that diltiazem has potential as a drug against SARS-CoV-2 infection and that Cav1.2 α1c is a promising target for antiviral drug development for COVID-19.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Diltiazem/pharmacology , Lung/drug effects , SARS-CoV-2/drug effects , A549 Cells , Animals , COVID-19/pathology , COVID-19/virology , Cells, Cultured , Chlorocebus aethiops , Diltiazem/therapeutic use , Disease Models, Animal , Female , HEK293 Cells , HeLa Cells , Humans , Lung/pathology , Lung/virology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , SARS-CoV-2/physiology , Vero Cells , Virus Attachment/drug effects , Virus Internalization/drug effects
19.
Viruses ; 14(2)2022 02 14.
Article in English | MEDLINE | ID: covidwho-1687052

ABSTRACT

The evolution of the SARS-CoV-2 virus during the COVID-19 pandemic was accompanied by the emergence of new heavily mutated viral variants with increased infectivity and/or resistance to detection by the human immune system. To respond to the urgent need for advanced methods and materials to empower a better understanding of the mechanisms of virus's adaptation to human host cells and to the immuno-resistant human population, we suggested using recombinant filamentous bacteriophages, displaying on their surface foreign peptides termed "mimotopes", which mimic the structure of viral receptor-binding sites on the viral spike protein and can serve as molecular probes in the evaluation of molecular mechanisms of virus infectivity. In opposition to spike-binding antibodies that are commonly used in studying the interaction of the ACE2 receptor with SARS-CoV-2 variants in vitro, phage spike mimotopes targeted to other cellular receptors would allow discovery of their role in viral infection in vivo using cell culture, tissue, organs, or the whole organism. Phage mimotopes of the SARS-CoV-2 Spike S1 protein have been developed using a combination of phage display and molecular mimicry concepts, termed here "phage mimicry", supported by bioinformatics methods. The key elements of the phage mimicry concept include: (1) preparation of a collection of p8-type (landscape) phages, which interact with authentic active receptors of live human cells, presumably mimicking the binding interactions of human coronaviruses such as SARS-CoV-2 and its variants; (2) discovery of closely related amino acid clusters with similar 3D structural motifs on the surface of natural ligands (FGF1 and NRP1), of the model receptor of interest FGFR and the S1 spike protein; and (3) an ELISA analysis of the interaction between candidate phage mimotopes with FGFR3 (a potential alternative receptor) in comparison with ACE2 (the authentic receptor).


Subject(s)
Bacteriophages/genetics , Cell Surface Display Techniques/methods , Molecular Mimicry , Receptors, Cell Surface/genetics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Bacteriophages/metabolism , Binding Sites , Humans , Protein Binding , Receptors, Cell Surface/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Attachment
20.
Cell ; 185(5): 860-871.e13, 2022 03 03.
Article in English | MEDLINE | ID: covidwho-1650841

ABSTRACT

The SARS-CoV-2 Omicron variant with increased fitness is spreading rapidly worldwide. Analysis of cryo-EM structures of the spike (S) from Omicron reveals amino acid substitutions forging interactions that stably maintain an active conformation for receptor recognition. The relatively more compact domain organization confers improved stability and enhances attachment but compromises the efficiency of the viral fusion step. Alterations in local conformation, charge, and hydrophobic microenvironments underpin the modulation of the epitopes such that they are not recognized by most NTD- and RBD-antibodies, facilitating viral immune escape. Structure of the Omicron S bound with human ACE2, together with the analysis of sequence conservation in ACE2 binding region of 25 sarbecovirus members, as well as heatmaps of the immunogenic sites and their corresponding mutational frequencies, sheds light on conserved and structurally restrained regions that can be used for the development of broad-spectrum vaccines and therapeutics.


Subject(s)
Immune Evasion/physiology , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/chemistry , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/immunology , Binding Sites , COVID-19/immunology , COVID-19/pathology , COVID-19/virology , Cryoelectron Microscopy , Humans , Mutagenesis, Site-Directed , Neutralization Tests , Protein Binding , Protein Domains/immunology , Protein Structure, Quaternary , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Surface Plasmon Resonance , Virus Attachment
SELECTION OF CITATIONS
SEARCH DETAIL